499 research outputs found

    Coherence lifetimes of excitations in an atomic condensate due to the thin spectrum

    Full text link
    We study the quantum coherence properties of a finite sized atomic condensate using a toy-model and the thin spectrum model formalism. The decoherence time for a condensate in the ground state, nominally taken as a variational symmetry breaking state, is investigated for both zero and finite temperatures. We also consider the lifetimes for Bogoliubov quasi-particle excitations, and contrast them to the observability window determined by the ground state coherence time. The lifetimes are shown to exhibit a general characteristic dependence on the temperature, determined by the thin spectrum accompanying the spontaneous symmetry breaking ground state

    Magnetodielectric coupling and phonon properties of compressively strained EuTiO3 thin films deposited on LSAT

    Get PDF
    Compressively strained epitaxial (001) EuTiO3 thin films of tetragonal symmetry have been deposited on (001) (LaAlO3)_0.29-(SrAl_{1/2}Ta_{1/2}O3)_0.71 (LSAT) substrates by reactive molecular-beam epitaxy. Enhancement of the Neel temperature by 1 K with 0.9% compressive strain was revealed. The polar phonons ofthe films have been investigated as a function of temperature and magnetic field by means of infrared reflectance spectroscopy. All three infrared active phonons show strongly stiffened frequencies compared to bulk EuTiO3 in accordance with first principles calculations. The phonon frequencies exhibit gradual softening on cooling leading to an increase in static permittivity. A new polar phonon with frequency near the TO1 soft mode was detected below 150 K. The new mode coupled with the TO1 mode was assigned as the optical phonon from the Brillouin zone edge, which is activated in infrared spectra due to an antiferrodistortive phase transition and due to simultaneous presence of polar and/or magnetic nanoclusters. In the antiferromagnetic phase we have observed a remarkable softening of the lowest-frequency polar phonon under an applied magnetic field, which qualitatively agrees with first principles calculations. This demonstrates the strong spin-phonon coupling in EuTiO3, which is responsible for the pronounced dependence of its static permittivity on magnetic field in the antiferromagnetic phase.Comment: Submitted to Phys. Rev.

    Optimal pooling for genome re-sequencing with ultra-high-throughput short-read technologies

    Get PDF
    New generation sequencing technologies offer unique opportunities and challenges for re-sequencing studies. In this article, we focus on re-sequencing experiments using the Solexa technology, based on bacterial artificial chromosome (BAC) clones, and address an experimental design problem. In these specific experiments, approximate coordinates of the BACs on a reference genome are known, and fine-scale differences between the BAC sequences and the reference are of interest. The high-throughput characteristics of the sequencing technology makes it possible to multiplex BAC sequencing experiments by pooling BACs for a cost-effective operation. However, the way BACs are pooled in such re-sequencing experiments has an effect on the downstream analysis of the generated data, mostly due to subsequences common to multiple BACs. The experimental design strategy we develop in this article offers combinatorial solutions based on approximation algorithms for the well-known max n-cut problem and the related max n-section problem on hypergraphs. Our algorithms, when applied to a number of sample cases give more than a 2-fold performance improvement over random partitioning

    Microstructural evolution under low shear rates during Rheo processing of LM25 alloy

    Get PDF
    © ASM InternationalMicrostructural features of LM25 alloy processed by two different routes: (1) conventional casting, and(2)shear casting based on inclined heated surface are studied. The microstructures of the primary phase for the shear-cast samples show rosette or ellipsoidal morphologies. Heat transfer of contacting melt with the inclined tube surface and shear stress exerted on the layers of the melt as result of gravitational force are crucial parameters for the microstructural evolution. Compared to those produced by conventional casting, shear-cast samples have a much improved tensile strength and ductility due to globular microstructure

    Assessing the capability of three different altimetry satellite missions to observe the Northern Current by using a high-resolution model

    Get PDF
    Over the last 3 decades, satellite altimetry has observed sea surface height variations, providing a regular monitoring of the surface ocean circulation. Altimetry measurements have an intrinsic signal-to-noise ratio that limits the spatial scales of the currents that can be captured. However, the recent progress made on both altimetry sensors and data processing allows us to observe smaller geophysical signals, offering new perspectives in coastal areas where these structures are important. In this methodological study, we assess the ability of three altimeter missions with three different technologies to capture the Northern Current (northwestern Mediterranean Sea) and its variability, namely Jason-2 (Ku-band low-resolution-mode altimeter, launched in 2008), SARAL/AltiKa (Ka-band low-resolution-mode altimeter, launched in 2013) and Sentinel-3A (synthetic aperture radar altimeter, launched in 2016). Therefore, we use a high-resolution regional model as a reference. We focus along the French coast of Provence, where we first show that the model is very close to the observations of high-frequency radars and gliders in terms of surface current estimates. In the model, the Northern Current is observed 15–20 km from the coast on average, with a mean core velocity of 0.39 m s−1. Its signature in terms of sea level consists of a drop whose mean value at 6.14∘ E is 6.9 cm, extending over 20 km. These variations show a clear seasonal pattern, but high-frequency signals are also present most of the time. In comparison, in 1 Hz altimetry data, the mean sea level drop associated with the Northern Current is overestimated by 3.0 cm for Jason-2, but this overestimation is significantly less with SARAL/AltiKa and Sentinel-3A (0.3 and 1.4 cm respectively). In terms of corresponding sea level variability, Jason-2 and SARAL altimetry estimates are larger than the model reference (+1.3 and +1 cm respectively), whereas Sentinel-3A shows closer values (−0.4 cm). When we derive geostrophic surface currents from the satellite sea level variations without any data filtering, in comparison to the model, the standard deviations of the velocity values are also very different from one mission to the other (3.7 times too large for Jason-2 but 2.4 and 2.9 times too large for SARAL and Sentinel-3A respectively). When low-pass filtering altimetry sea level data with different cutoff wavelengths, the best agreement between the model and the altimetry distributions of velocity values are obtained with a 60, 30 and 40–50 km cutoff wavelength for Jason-2, SARAL and Sentinel-3A data respectively. This study shows that using a high-resolution model as a reference for altimetry data allows us not only to illustrate how the advances in the performances of altimeters and in the data processing improve the observation of coastal currents but also to quantify the corresponding gain.</p

    Joint analysis of coastal altimetry and high-frequency (HF) radar data: observability of seasonal and mesoscale ocean dynamics in the Bay of Biscay

    Get PDF
    Land-based coastal high-frequency (HF) radar systems provide operational measurements of coastal surface currents (within 1–3&thinsp;m depth) with high spatial (300&thinsp;m–10&thinsp;km) and temporal ( ≀ 1&thinsp;h) sampling resolutions, while the near-continuous altimetry missions provide information, from 1993 until today, on geostrophic currents in the global ocean with typical along-track and temporal sampling resolutions of  &gt; 7&thinsp;km and  &gt; 9 days, respectively. During the last years, the altimetry community has made a step forward in improving these data in the coastal area, where the data present lower quality than in the open ocean. The combination of HF radar and altimetry measurements arises as a promising strategy to improve the continuous monitoring of the coastal area (e.g. by expanding the measurements made by HF radars to adjacent areas covered by the altimetry or by validating/confirming improvements brought by specific coastal algorithms or new altimeter missions). A first step towards this combination is the comparison of both data sets in overlapping areas.In this study, a HF radar system and two Jason-2 satellite altimetry products with different processing are compared over the period from 1 January 2009 to 24 July 2015. The results provide an evaluation of the performance of different coastal altimetry data sets within the study area and a better understanding of the ocean variability contained in the HF radar and altimetry data sets. Both observing systems detect the main mesoscale processes within the study area (the Iberian Poleward Current and mesoscale eddies), and the highest correlations between radar and altimetry (up to 0.64) occur in the slope where the Iberian Poleward Current represents a significant part of the variability in the circulation. Besides, the use of an Ekman model, to add the wind-induced current component to the altimetry-derived geostrophic currents, increases the agreement between both data sets (increasing the correlation by around 10&thinsp;%).</p

    Coherent Pair Production by Photons in the 20-170 GeV Energy Range Incident on Crystals and Birefringence

    Get PDF
    The cross section for coherent pair production by linearly polarised photons in the 20-170 GeV energy range was measured for photon aligned incidence on ultra-high quality diamond and germanium crystals. The theoretical description of coherent bremsstrahlung and coherent pair production phenomena is an area of active theoretical debate and development. However, under our experimental conditions, the theory predicted the combined cross section and polarisation experimental observables very well indeed. In macroscopic terms, our experiment measured a birefringence effect in pair production in a crystal. This study of this effect also constituted a measurement of the energy dependent linear polarisation of photons produced by coherent bremsstrahlung in aligned crystals. New technologies for manipulating high energy photon beams can be realised based on an improved understanding of QED phenomena at these energies. In particular, this experiment demonstrates an efficient new polarimetry technique. The pair production measurements were done using two independent methods simultaneously. The more complex method using a magnet spectrometer showed that the simpler method using a multiplicity detector was also viable.Comment: 10 pages, 13 figures, 1 table, REVTeX4 two column, Version for publicatio

    Linear to Circular Polarisation Conversion using Birefringent Properties of Aligned Crystals for Multi-GeV Photons

    Get PDF
    We present the first experimental results on the use of a thick aligned Si crystal acting as a quarter wave plate to induce a degree of circular polarisation in a high energy linearly polarised photon beam. The linearly polarised photon beam is produced from coherent bremsstrahlung radiation by 178 GeV unpolarised electrons incident on an aligned Si crystal, acting as a radiator. The linear polarisation of the photon beam is characterised by measuring the asymmetry in electron-positron pair production in a Ge crystal, for different crystal orientations. The Ge crystal therefore acts as an analyser. The birefringence phenomenon, which converts the linear polarisation to circular polarisation, is observed by letting the linearly polarised photons beam pass through a thick Si quarter wave plate crystal, and then measuring the asymmetry in electron-positron pair production again for a selection of relative angles between the crystallographic planes of the radiator, analyser and quarter wave plate. The systematics of the difference between the measured asymmetries with and without the quarter wave plate are predicted by theory to reveal an evolution in the Stokes parameters from which the appearance of a circularly polarised component in the photon beam can be demonstrated. The measured magnitude of the circularly polarised component was consistent with the theoretical predictions, and therefore is in indication of the existence of the birefringence effect.Comment: 12 pages, 12 figures, 1 table, REVTeX4 two column, Version for publicatio

    Results on the Coherent Interaction of High Energy Electrons and Photons in Oriented Single Crystals

    Full text link
    The CERN-NA-59 experiment examined a wide range of electromagnetic processes for multi-GeV electrons and photons interacting with oriented single crystals. The various types of crystals and their orientations were used for producing photon beams and for converting and measuring their polarisation. The radiation emitted by 178 GeV unpolarised electrons incident on a 1.5 cm thick Si crystal oriented in the Coherent Bremsstrahlung (CB) and the String-of-Strings (SOS) modes was used to obtain multi-GeV linearly polarised photon beams. A new crystal polarimetry technique was established for measuring the linear polarisation of the photon beam. The polarimeter is based on the dependence of the Coherent Pair Production (CPP) cross section in oriented single crystals on the direction of the photon polarisation with respect to the crystal plane. Both a 1 mm thick single crystal of Germanium and a 4 mm thick multi-tile set of synthetic Diamond crystals were used as analyzers of the linear polarisation. A birefringence phenomenon, the conversion of the linear polarisation of the photon beam into circular polarisation, was observed. This was achieved by letting the linearly polarised photon beam pass through a 10 cm thick Silicon single crystal that acted as a "quarter wave plate" (QWP) as suggested by N. Cabibbo et al.Comment: Presented at International workshop "Relativistic Channeling and Related Coherent Phenomena", Frascati (Rome) 23-26 March 200
    • 

    corecore